Assignment 6

1. On $(-1,1]$ define $\rho(x, y)=1-|1-|x-y||$. Show that ρ is a metric and $((-1,1], \rho)$ is compact.
2. For $f \in C_{0}(\mathbb{R})$, let $\tilde{f}(x)=f\left(\frac{x}{1-|x|}\right)$. Show that $\left\{\tilde{f}: f \in C_{0}(\mathbb{R})\right\}$ is a subspace of $C(-1,1]$, the space of continuous functions on the metric space $((-1,1], \rho)$. Which $g \in C(-1,1]$ arise as \tilde{f} for some $f \in C_{0}(\mathbb{R})$?
3. Let $f \in C(\mathbb{R})$. Show that $f(K)$ is a compact subset of \mathbb{C} for any compact $K \subset \mathbb{R}$.
4. Let $\mathbb{R}^{\infty}=\left\{x=\left(x_{n}\right), x_{n} \in \mathbb{R}:\|x\|^{2}=\sum_{1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}$. Let $S=\left\{x \in \mathbb{R}^{\infty}\right.$: $\|x\| \leqslant 1\}$. Show that S is bounded but not totally bounded in the metric space $\left(\mathbb{R}^{\infty}, d\right)$, where $d(x, y)=\|x-y\|$.
