1. On (-1,1] define $\rho(x,y) = 1 - |1 - |x - y||$. Show that ρ is a metric and $((-1,1],\rho)$ is compact.

2. For $f \in C_0(\mathbb{R})$, let $\tilde{f}(x) = f\left(\frac{x}{1-|x|}\right)$. Show that $\{\tilde{f} : f \in C_0(\mathbb{R})\}$ is a subspace of C(-1,1], the space of continuous functions on the metric space $((-1,1],\rho)$. Which $g \in C(-1,1]$ arise as \tilde{f} for some $f \in C_0(\mathbb{R})$?

3. Let $f \in C(\mathbb{R})$. Show that f(K) is a compact subset of \mathbb{C} for any compact $K \subset \mathbb{R}$.

4. Let $\mathbb{R}^{\infty} = \{x = (x_n), x_n \in \mathbb{R} : ||x||^2 = \sum_{1}^{\infty} |x_n|^2 < \infty\}$. Let $S = \{x \in \mathbb{R}^{\infty} : ||x|| \leq 1\}$. Show that S is bounded but not totally bounded in the metric space (\mathbb{R}^{∞}, d) , where d(x, y) = ||x - y||.